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Exact Results for the Two-Dimensional, 
Two-Component Plasma at F =  2 in Doubly 
Periodic Boundary Conditions 
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The two-dimensional, two-component plasma is considered in doubly periodic 
boundary conditions with the positive and negative charges confined to separate 
interlacing rectangular lattices. It is shown that at the special coupling F =  2, on 
a lattice of 2M 1 • 2M2 sites, the grand partition function can be written as a 
double integral over a product of determinants of dimension 2M 2 x 2M 2. On 
the basis of a conjecture regarding the zero distribution of the grand partition 
function, the large-M 2 behavior of the determinant is given and the pressure 
evaluated exactly. 
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1. I N T R O D U C T I O N  

The two-componen t ,  two-d imens iona l  ( log-poten t ia l )  C o u l o m b  gas is a 
mode l  system in m a n y  physical  theories.  The system first became p rominen t  
in the work  of Kos ter l i t z  and  Thouless  on topo log ica l  phase t rans i t ions  
in two d imens ions  (ref. 1; see also the recent reviews in refs. 2 and  3). As 
well as the d iscovery  of further topo log ica l  phase  t rans i t ions  ( roughening  
t ransi t ion,  f loat ing phases,  etc. ; see, e.g., ref. 4), the C o u l o m b  gas has since 
been used as the basis for r enorma l i za t ion  g roup  theories of two-d imens iona l  
phase  t ransi t ions.  (s) 

The  two-d imens iona l  C o u l o m b  gas in a con t inuous  d o m a i n  is a two-  
p a r a m e t e r  system: the d imensionless  coupl ing  cons tan t  

F :=  q2/k B T (1.1) 
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where q is the magnitude of the charges, and the dimensionless density rp, 
which is the ratio of the interparticle spacing lip to the "hard-core" 
diameter of the particles ~. The hard-core or similar regularization of 
the logarithmic potential is necessary to stop the collapse of positive and 
negative charge pairs at low temperature. 

An alternative to imposing a "hard-core" about each of the charges is 
to divide the domain into a grid of two sublattices, and allow each species 
to occupy sites on one or the other of the sublattices. On physical grounds 
it is expected that the lattice and continuum models will have the same 
properties in the low-density limit. 

One such shared property should be the leading-order singular behavior 
of the Mayer expansion for F > 4  (the conductor phase) obtained by 
Zittartz (6) in the continuum for ~--* 0 as 

"cBPsing~c(r) f~2/c,d r~, 1 / (2d - r ) r  (1.2) 
[~2/(2d- r) log (, 1 / (2d-  F) e Z + 

where ~ denotes the fugacity, the dimension is d = 2, and c(F) is independent 
of (. In the context of the Yang-Lee characterization of a phase transition, (7"~ 
the behavior (1.2) implies that in the conductor phase the zeros of the 
grand partition function must pinch the real axis in the complex fugacity 
plane at ( = 0 .  On the other hand, for F>~4 the Mayer expansion is 
convergent, (s~ so the neighborhood of ~ = 0 must be zero-free. 

A recent study (9~ of an analogous two-component, log-potential 
Coulomb gas on a one-dimensional lattice has shown similar features of the 
complex zeros to those expected on the two-dimensional lattice. On the 
one-dimensional lattice, it has been conjectured (~~ that all the zeros of the 
grand partition function lie on the negative real axis in the complex scaled 
fugacity (4) plane for F <  2 and on the unit circle for F >  2. These properties 
are conjectured to hold true in the finite system, and further, for F < 2, the 
zero closest to the origin (4~ say) is expected (9) to have the expansion 

1 I a'(F) a2(F) ] 
41= M~ d ~ a o ( r ) + - - ~ - + - - m - r - +  . . .  (1.3) 

where M is the order of the grand partition function polynomial and the 
dimension is d =  1. From (1.3) the behavior (1.2) with d =  1 is deduced. 

Observing the similarities of the behavior (1.2) for d-- 1 and 2, the 
question of the behavior of the grand partition function zeros when d =  2 
immediately arises. This problem is clearly more complex than that in one 
dimension, as an expansion of the form (1.3) would depend on the precise 
shape of the finite system in addition to the number of lattice sites. The 
most obvious starting point toward answering this question is the numerical 
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evaluation of the grand partition function polynomials for small lattice 
sizes. Experience of our previous study (9/ shows that the largest lattice 
which can be thus treated will have approximately 16 sites. Due to this 
small size and the anticipated strong shape dependence, it is desirable to 
have some larger size data available at a particular coupling so as to aid 
the interpretation of the data in general. 

With this aim in mind, in this paper we will make an analytic study 
of the grand partition function polynomial at the coupling F = 2 in doubly 
periodic boundary conditions. It will be shown that on a 2M1 x 2M 2 lattice 
the grand partition function can be written as a double integral over a 
product of determinants of dimension 2M2x 2M2. It is not possible 
explicitly to evaluate the determinant, but the numerical task of calculating 
the zeros from this expression now depends only polynomially on M2 in 
cost. A numerical study of this formula and the general F cases will be 
undertaken in a subsequent paper. 

A spinoff from this calculation is a rederivation of the exact expression 
for the pressure, in the thermodynamic limit, obtained by Gaudin. (11) Like 
Gaudin's calculation, our derivation relies on a conjecture so is not 
rigorous. The conjecture is closely related to the expected behavior of the 
density of zeros of the grand partition function and thus our main theme. 

2. EXACT E V A L U A T I O N  OF THE G R A N D  PARTITION 
FUNCTION AT I ' = 2  

2.1. The Potential  in Periodic Boundary Condit ions 

The solution of the two-dimensional Poisson equation 

V2~b(x, y) = -2~z 6(x) 6(y) (2.1) 

subject to the periodicity condition 

~b(x + L, y) = ~b(x, y + W) = q~(x, y) (2.2) 

is required. 
Formally, this can be achieved by writing 

O(x, Y) = ~ ~, a e27zi(mx/L (2.3) 
m =  c o  n =  - - a o  

and 

~(X) =-s . . . .  O(Y) = V n =  -oo e2=iny/W (2.4) 
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Substituting (2.3) and (2.4) in (2.1), differentiating under the summation 
signs, and equating like coefficients of the basis function 

e 2 g i ( m x / L  + n y / W )  

gives 
1 1 

a m ' n  - -  2rcLW (m/L) 2 + (n/W) 2 (2.5) 

The coefficient of the constant term [(m, n) = (0, 0)] in the Fourier expan- 
sion thus diverges. Omitting this term (a step which is often justified by 
charge neutrality ~12)) gives 

~b(x, y) - 2 ~ L ~  . . . . . . . .  (m/L) 2 + (n/W) 2 (2.6) 
(re, n) 4- (0,0) 

The summation (2.6) is conditionally convergent and the value is 
sought such that the Poisson equation (2.1) is satisfied. Glasser (13) has 
summed (2.6) as 

~b(x, y) = rcy2/LW - log [01(Tc(x + iy)/L, e-~W/L)t + constants 

where 

(2.7) 

Since for small Izi, 

~b(x, y ) ~  -1 log(x2  + y2) 

Ol(z; q) ~ z0'1(0; q) 

then the required potential which satisfies (2.1) and (2.9) is 

LOl(rc(x + iy)/L; e-'~W/L) I ~b(x, y ) =  - l o g  I 
7"C0] (0,  e-  ~W/L ) I 

(2.9) 

(2.10) 

(2.11) 

01(z;q)= --i ~ (-- l)n q(n+1/2)2e2~(~+l/2)z (2.8) 
n ~ co 

A well-known theorem of complex analysis says that the real part of an 
analytic function is harmonic. Now log 01(z; q) is analytic in z for 01 r  
and its real part is log]01(z; q)]. Hence the term rcyZ/LWin (2.7) should be 
omitted for (2.1) to be satisfied. However, the right-hand side of (2.7) 
without this term is periodic in x, but not in y. The solution satisfying (2.1) 
obtained from (2.6) is thus discontinuous in the y direction. 

The constant term in the potential is chosen so that as L, W ~  0% 



Two-Dimensional, Two-Component Plasma 1145 

Further discussion regarding the solution of (2.1) in doubly periodic 
boundary conditions can be found in ref. 12. 

2.2. Def in i t ion of  the Model  

Consider a rectangle of side lengths L and W. Let the rectangle be 
divided into a grid of M1 x M 2 sites, with lattice points at the coordinates 
(nlL/M~, n2W/M2), nj= 1, 2 ..... Mp (p= 1, 2). Introduce a second inter- 
lacing lattice with coordinates ((nl - ~I)L/M~, (n  2 -  q~2) W / M 2 )  and 
denote these lattices s and $2, respectively (see Fig. 1). Allow N 
(<~M~M2) positive charges to occupy ~ and N negative charges of the 
same magnitude to occupy ~2. 

Two particles, one of charge e at x = (x, y) and the other of charge e' 
at x ' =  (x', y') interact via the potential 

V(x, x') =ee'cb(x-x', y -  y') (2.12) 

where r is given by (2.11). Denote the coordinates of the kth positive 
charge by (m~L/M1, nk W/M2) and the coordinates of the kth negative 
charge by ((m'k-~)l)L/M1, (n'k-~2)W/M2), where 1 <~mk, m'~ <~Mi and 
1 ~< n~, n~ ~< M 2. Further denote 

and 

Xk = ~rnk / M1  + ~ i W n k / L M  a 

Yk = ~ ( rn~  - -  ~ I ) / M 1  -[- 7riW(n'k -- ~ 2 ) / L M 2  

+ + + 

0 0 0 

(2.13a) 

(2.13b) 

I + + + 
0 0 0 

O. z 

,4, ~ v 
+ + + 

o o o 

K--~ 
r 0"I 

a l  

Fig. 1. Geometry of the two interlacing rectangular lattices where a l = L / M  I and 
a 2 = W/M 2. The plus signs form s while the circles form A~ 
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With the notation (2.13), the Boltzmann factor WNC for N particles of 
charge q and N particles of charge - q  is 

WNI "= ([~01(0; q)/LI)  u r  IF(x1 ..... xN; y ,  ,..., yu)l r (2.14) 

where 

F(x l  ..... X N ;  YJ ,..., YN) "-- I~1 <~j<k<~N Ot(Xk -- Xj; q) 01(y k -- yj; q) 
I~U=l 1-IN= 10,(Xj -- ye; q) 

and 

(2.15) 

q = e  ,~w/L (2.16) 

The partition function Z N F  and the grand partition function -~r are 
given by 

and 

Z N r  = Z Z WNr  (2.17) 
~{~} y~{~} 

M 1  M 2  

= -  ~ ~2NZIvr (2.18) w E - -  

N = 0  

respectively, where ~ denotes the fugacity and the sum in (2.17) is over the 
set of combinations of the set of complex numbers rj,~ and sj, k taken N at 
a time, where 

and 

rj, k = nj/M1 + 7ziWk/LM2 (2.19a) 

Sj, K = 7r(j-- (~,)/M, + rciW(k - (~2)/LM2 (2.19b) 

with 1 <~j<~M1 and 1 <~k<<.M2. 

2.3.  B o l t z m a n n  F a c t o r  as a D e t e r m i n a n t  

The exact solution at F = 2  relies on the following 
identity, which can be found in ref. 14, Eq. (43), p. 33. 

determinant 

T h e o r e m  2.1. With the notation (2.15), 

04 ( x j - y j ) - c ~ ; q  F(x l  ..... X N ; y  I ..... YN)  
1 

= 04(~; q) det F 04(xj - y k - ~ ; q )  
L04(cr q) o l ( x j -  yk; q)J,,k = ,,...,~ 

(2.20) 
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where OI(Z ; q) is given by (2.8) and 

04(z;q)= ~ q~2eZ'nz (2.21) 
tt ~ --oo 

Proof. (See Appendix A). 

Coro l la ry  2.1. We have 

F(xt,..., XN; J"l ..... YN)  

fo 04(7ce; q) d e t [ f ( x j -  y~, c~)]j,k = 1,.,u (2.22) de = 

where 

04(z-  ~e; q) 
f(z,  e ) -  (2.23) 

04(7~Cg ; q) 01(z; q) 

Proof. 
and note that F is independent of e, while 

fO 0 4 ( Z - -  7r, O~ ; q )  = 1 de 

for any z. 

Remark. The determinant identity (2.22), 

Simply replace c~ by ~za, integrate both sides with respect to c~, 

(2.24) 

which generalizes the 
Cauchy double alternant formula, has an analogue (Theorem 4.1 of ref. 15) 
which generalizes the van der Monde determinant formula. 

2.4. Grand Par t i t ion  Funct ion as a D e t e r m i n a n t  

Using the key identity (2.22) and the expression for the Boltzmann 
factor (2.14), we have 

WN2 = (~01(0; q)/L) 2N 04(~e; q) det[f(xj - Yk, e)] de 

i 

fo 04(~; q) d e t [ f ( 2 j -  Yk, 7)] d7 (2.25) x 

where i denotes the complex conjugate of z. Next replace the last matrix 
in (2.25) by its transpose, note from (2.23) that 

f (  - z, 7) = - f ( z ,  - 7) (2.26) 
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and use the periodicity in 7 to conclude that 

. 1  

j 04(W; q) de t [ - f (2 j -  )vk, 7)] d7 
0 

= ( -  1) '~ f] 040z7; q) d e t [ f ( Y j -  2k, 7)] d7 (2.27) 

The resulting product of determinants can be written as a block determinant, 
which gives 

WN2 = (~0'1(0 , q)/L ) 2N 

x 040ze ; q) 04(~ 7 ; q) det f(J~J _ xk, 7) f(XJ-o~yk, ~)1 de & 
(2.28) 

where ON denotes the zero matrix of order N. 
If the identity (2.28) is substituted in the expression for the grand 

partition function (2.17) and (2.18), following Gaudin, (~) we observe that 
the resulting expression is an expansion in minors of a 2M1 M2 x 2M~ M2 
matrix. We have 

1 1 

S~ = fo fo 04(~e; q) 04(~7; q) det(12M~M2 + ( ~  ]01(0, q)I/L)K) de d7 (2.29) 

where the matrix K is given by 

=~ O M ~ M 2  f(r~,.t2--s~i,t~,e)] (2.30) 
K Lf(gh,t2 -- rt;,l~, 7) OMIM2 

1M denotes the M x  M identity matrix and r~.r and st, t, are given by (2.19). 
The integers lt, lf, 12, l~ lie in the ranges 

I ~ l l ,  I; <<.M I and l <.12, l~ <.Mz (2.31) 

2.5. Part ial  D iagona l i za t ion  of  a Block M a t r i x  

Consider the elements of the upper right-hand block of (2.30), From 
(2.19) the quantity rh,t2-st;,~ depends only on the differences I1 -  l; and 
12-l~, so that we can write 

c ~~ " " (2,32) f(rh.12--sl;d~, a) := l : - q &  t~t~) 
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Further, from (2.23) and the periodicity property (AI.1) of the theta 
functions given in the Appendix, we have 

M1--11,12\ I (2.33) 

Similarly, the entries in the lower left-hand block are also dependent on 
differences, so we can write 

( i )  f(gh,12- rl;,l~, 7) := ch-ti,t2-l~(Y) (2.34) 

These entries have the same "anticyclic" property as those of the upper 
right-hand block (2.33). 

Due to the anticyclic property in the label l~ it follows that the 
transformation 

where 

[Ogl ia2 ?M2] K [oMUM20uM2 ] (2.35) 

F l _2rcit ,(k I + 
] 

u =  , 1/2)/~,, 5,~,k2/ (2 .36)  
] 

(the symbol 6a.b denotes the Kronecker delta and 0 ~ < k 2 ~ M 2 - 1 )  
diagonalizes the block matrix K. Since this transformation can be applied 
to the matrix in (2.29) without changing the value of the determinant, we 
see from (2.29) and (2.35) that 

82 = 04(~zc~ ; q) 04(7t7; q) det(12M~M 2 + A) de d~ (2.37) 

where 

and 

OM~ar 6k*'kiS~~ k~(c~)] (2.38) A= (I) 

[ - ( ~ k l , k s  OM1M 2 J 

S(p) [R~ ' �9 < , < -  k~,,, = ( ~  10,(0, q)l/L) 
M1 1 

2 
ll = 0 

c(p) ( t~ e2ral~(kl + 1/2)/M1 (2.39) 
l t ,k2--  k ~ . l  d ) 

Rearrangement of the rows and columns in the matrix sum 12M~M2 + A 
shows that the determinant factorizes to give 

i 1 ?vli -- I 

•2=fo fo 04(rc~ O4(rcT;q) l--I detA(kl)dad~? (2.40) kl =0 
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where 

is a 2M 2 x 2M2 block 
summations (2.39). 

Forrester 

- O M  2 S (0) ( ~ ] ~  kl,k 2 k~\ 11 a(k l )  = 12~2 +-_~1~. 2(7) (2.41) 
[-~'~ kl,x2-- k' O M 2  

matrix. It therefore remains to evaluate the 

2.6. Fourier Decomposi t ion of a Theta Function Ratio 
and a Related Summat ion  

To evaluate (2.39), we first write 

84(Z -- 7~  ; q) 

01(z;q) 
(2.42) 

so that the Fourier components when z = n k / M ,  O < ~ k < ~ M - 1 ,  are 
displayed. 

Theorem 2.2. We have 

84(2"-  7~(~; q) 

where 

84(nc~; q) 0,1(0; qM) --Miz 
e 

01(z; q) 81(mz;  qM) 8,1(0; q) 

M--I 
x ~ e (2s+ 1)iz 0 4 ( M z -  ~ - ~z (M/2  - s -  1/2); qM) 

~=0 04(Zte + r ~ r ( M / 2 - - s -  1/2); qM) 

(2.43) 

q = e ~i~ (2.44) 

ProoL See Appendix A2. 

In (2.43) choose 
rc rc i W 

z = - ~ ( I ~  +r (12+r 1 2 = k 2 - k l  
(2.45) 

q = e -~W/L, r = iW/L ,  M = M I  

and substitute the resulting expression in the definitions (2.32) and (2.23) 
of %,12.-~~ Then the only term dependent on 11 is the complex exponential 
exp[2zti(s + 1/2) l l /M1] Is is the summation variable in (2.43)]. Therefore 
the summation over ll in (2.40) is simply 

M~ 1 
E e2nill(s+kl + 1)/M1 = M 1  6 s + k  ~ + I,MI (2.46) 

It = 0 
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and thus 

M 1 - -  I 2trill(k1 + 1/2) 
E cI~ exp 

l~ = o M1 
0,1(0; qM1) exp{ 2rti(M~/2 - kl  - 1/2)[(91/M 1 + i W ( l  2 + q~2)/LM2] } 

= m 1 
0](0; q) 01(~1 "~- 7ziWMl(12 + ~2)/LM2); qM1) 

04(7~1 ~- rciWM~(12 + (~2)/LM2 - roe + rtz(M,/2 - k I -- 1/2); qM,) 
04(ha - fez(M1~2 - k~ - 1/2); qM~) 

:= f (~ba, ~b2, kl-k M11/______3_2 ,12,~ ) (2.47) 

Similar use of (2.43) shows that 

M I  1 

E 
II = 0 

C(1) e2"i'l(kl+l/2)/Ml--f(--q~l, q~2, (kl ~- 1/2) /M1,  -12 ,  ~) (2.48) 
l i ,  12 

where f is defined in (2.47). 

2.7. The Scaled Fugacity 

So that the particle-hole symmetry of the lattice gas is most clearly 
displayed, it is necessary to scale the fugacity ~ so that the coefficient of 
~ZM1M2 is unity. This can be achieved by calculating the energy of the 
configuration in which all lattice sites are filled and scaling by the 
corresponding Boltzmann factor. 

For a potential periodic in both directions the energy when all sites 
are filled is the same at each site. From Section 2.1 we know that the 
potential 

(~(x, y ) = r c y 2 / L W - l o g l O i O z ( x  + iy)/L; e ,~w/L)] (2.49) 

is periodic in both x and y. After introducing the notation 

M 1  1 M 2 - -  1 

P(e-r~r) = U H OI(g( l l /M1 -~ il2r/M2); e -~r) (2.50) 
l l  0 l 2 = 0 
( /1 , /2 )  # ( 0 , 0 )  

and 
M I  1 M 2 -  1 

Q(q~l, ~2; e-~r)= I~ H 
l I = 0 l 2 = 0 

Ol(TZ E(/1 q- ~l )/M1 q- i([2 q- ~2)r/M2]; e - . r )  

(2.51) 
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we can write the energy E(~)(p) at a site in row p ( p = 0 ,  1 ..... M 2 -  1) of 
sublattice 501 with this potential when all lattice sites are filled as 

E(*)(p) = E~l)(p) + E(2*)(p) (2.52) 

where 

and 

_q2rtWM 1 Ma- 
E~ I)(p) L(M2)2 ~ [ ( 1 2 - p ) 2 - ( 1 2 + O 2 - P )  2] 

l 2 = 0 

(2.53) 

and thus 
E(1)(p) = E~I)(0) q- E2(t)(0) - E~l)(p) (2.56) 

The quantity E~2~)(p) is the energy at a site in row p of the sublattice s 
with all sites filled and the potential (2.49) without the t e r m  7 [ y z / L W ~  which 
is the Coulomb potential of Section 2.1. Since this potential is not periodic 
in the y direction, E(2~)(p) will depend on p. 

To calculate E(21~(p), it follows from the product expansion of 01. 

P(q) = iM2-1Mlq -M1M2/4+M*/2-1/4 ~ (1 --q2"M*/M2)2(1 __qZ,)MtM2 3 

n = l  

(2.57) 

and 
Q((q, ~2; q) = - - i M 2 +  * q-MIM2/4- M1/4M2+ Ml /2  e~zr~b2Ml(l - l/M2) ~zi~bl(M2 1) 

x 01(~1 + ~irM102/Mz; qM,/M2) 

X 1~I (1 -- qZ")MtM2/(1 -- q2,M~/M2) (2.58) 
n = l  

Hence from (2.56), (2.54), and (2.53) we have 

Ma q~2 M~ - ~2 M~(2p + ~ )/M20 ] (0 ; qM~/M2) 
E(1)(p) = _q2 log [ 0](0; q)----~'(-~+~zi'--WM---~(~2/LM~2i-~ -7ar (2.59) 

where 
q = e-~W/L (2.60) 

E~l)(p) = _q2 loglP(e-~W/L)/Q((j1, 02; e "W/L)l (2.54) 

Since E(1)(p) is independent of p, we have 

Eo) E(1)(p)=E}I)(O) + 2 (0) (2.55) 
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A similar calculation shows that the analogous energy E2(2)(p) on a 
site of row p of sublattice 5r is given by (2.59) with the replacements 
~b 1 ~  -~b 1 and ~2~--~-~b2, so that the combination E(1)(p)+E(Z)(p) is 
independent of p. The total energy E of the completely filled lattice is 
therefore 

E = !M2 1M2(E(21)(P) q- E~2)(P)) 

M 1 0 , 1 ( 0 ;  qMI/M2) qM,/M2) 
= --M1M2q 2 log 0'1(0, q) 01(zC~bl + ~iWM~O2/LM2; (2.61) 

If we replace the fugacity ~ by the scaled fugacity ~ according to the 
formula 

= ~2  Irc0] (0; q)/L[ re --FE/(MIM2q2) (2.62) 

with E given by (2.61), the coefficient of the highest power of ~ in the grand 
partition function (2.18) is unity, as required. 

2.8. Final Expression for -2  

The formula (2.40), with the scaled fugacity as specified by (2.62) and 
(2.61 ) and the summation evaluations (2.47) and (2.48) is our final expression 
for ~2. Thus we have 

1 1 M 1 1 

Z2 = I_ I_ 04(rc~; q)04(7l;7; q) I ]  det A(kl)d~ d7 
~u 

k I = 0 

where 

1 [-OM2 c f (~ ,  ~2, (kl + 1/2)!M1, k2-k'2,  ~) ] 
a(k l )  = 2M2+Lc f (_~1 ,~2 , ( k l+ l /2 ) /M1 ,k2_k2 ,  y ) OM 2 

(2.63) 

and 

C = ~1/2 0 1 ( 7 ~ 1  "q- 1tiWM1(92/LM2; qMI/M2) 0,i(0; q) 
" M10'1(0; qM,/M2) (2.64) 

The function f is specified by (2.47), and the rows of the upper right-hand 
and lower left-hand blocks in (2.63) are labeled by k: (0 ~<k2 ~<M2--1), 
while the columns are labeled by k~ (0 ~< k~ ~< M 2 -  1 ). 

3. THE T H E R M O D Y N A M I C  L IMIT  

3.1. The Infinite-Strip Limit 

Two different limits give an infinite strip of lattice points, 

M1, L ~ oo, L/MI ~ al (3.1a) 

822/61/5-6-13 
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and 

M2, W ~  0% W / M  2 --* a 2 (3.1b) 

From Section 2.1 we know that the potential is periodic in the direction of 
the strip for (3.1a), but not for (3.1b). In the latter case the potential 0(Y) 
in the direction of the strip is equal to the periodic function of case (3.1a) 
plus the quadratic ny2/LW. It is therefore to be expected that the free 
energy in each case will be different. 

We will first consider the limit (3.1a). The product in (2.40) is then 
essentially a Riemann sum approximation to an integral. Also, from the 
conjugate modulus transformation 

04(Z" ~ e ~i,) = ( - - i t )  1/2 e 'z2/'~O2(z/r ; e ~'/~) (3.2) 

it follows that for L ~ 0% 

04(rc~;e_~tw/L)_ ( L ~1/2 \ ~ - ~ /  e teL(o:-- 1/2)2/W (3.3) 

Hence 

L 1 1 

+M1 f log[det A(cr x)] dx 
Jo 

(3.4) 

where 

OM 2 
A(c~, 7, x ) =  12M2+ g(--01, 02, X, k 'z--k2,  7) 

and 

g(01, 02, x, k 2 - k ' 2 ,  ~)] 

OM2 J 
(3.5) 

g(O1, 02, X, /2, (X) 
= ~ l /2e2~ i ( t /2 -  x)[~bl + ia2(12 + ~2)/al] 

0](0; qM1) I01(rc01 + r t iWMIO2/LM2; qM1/M2)I 
X 

0'1(0; qM~/M2) 01(~01 + zciWMI(12 + O2)/LM2; qM~) 

04(rc01 + ~ia2(12 + 02)/al - rcc~ + 7ziW( 1/2 - x)/al  ; e -  ~W/ax) 
X 

0 4 ( 7 I ' ( X  - -  ~iW(1/2 - x )/al ; e r~W/al ) (3.6) 
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The pressure P~v in an infinite strip of width W at F--  2, defined as 

flPw= lim - l logZ2 (3.7) 
M 1 , L  ~ oo L 
L / M 1  ~ a l  

is therefore given by the formula 

1 
~ P w = R e { w [ ( ~ o - ~ ) 2 + ( 7 o - ~ ) 2 ] - a ~ f o  

where ~o and 7o maximize the integral (3.4). 

) 
log[det A(c%, 7o, x)] dx[ 

(3.8) 

To obtain the strip free energy in the limit (3.16), it would be 
necessary to provide the large-M2 behavior of the 2M2 x 2M2 matrix A(kl) 
as given by (2.63). It follows from the periodicity property (A1.2) of the 
theta functions that the elements f as given by (2.47) of the block matrix 
in (2.63) have the periodicity property 

f((Jl, 02, 12 + M2, c~)= e2~'~f(01, 02, 12, ~) (3.9) 

Since in general e ~ 7, the matrix A(kl) has no simple cyclic structure. We 
have been unable to obtain the asymptotic behavior of this matrix. 

3.2. The  Bulk Pressure 

To obtain the bulk pressure from the strip pressure (3.8), the values of 
~o and 70 for large strip width W are required. To deduce this behavior, we 
use the physical argument that the strip system, having an effective 
one-dimensional Coulomb potential, should be in a dipole phase. As such, 
Pw(~), in the complex ~ plane, must be free of singularities in a 
neighborhood of ~ = 0. However, as the strip width is increased, the effective 
one-dimensional potential gives way to the two-dimensional logarithmic 
Coulomb potential. At F =  2, in the bulk, the system is a conductor and the 
singular behavior (1.2) implies that the singularities pinch the point ~ = 0. 

From (3.8) the singularities o f fw(~)  occur at the zeros of A(c%, 70, x). 
From (3.5) and (3.6), for A(c%, 70, x) to approach zero as 1~1--+0, the 
matrix elements as defined by (3.6) must tend to infinity. This occurs when 
the denominators 

0 4 ( g ~  0 - -  rciW(1/2 - x); e ~w/a,), 04(~7o- ~iW(1/2 - x); e ~w/,1) 

(3.1o) 
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approach zero. The function 0 4 ( ~ Z  ; e ~ )  vanishes at z = (rcr/2) mod re, rtz, 
and thus (3.10) can only vanish if Co, 7o = 0 or 1 [the points 0 and 1 are 
equivalent, since the integrand in (3.4) has period 1 in both :~ and 7]- Thus, 
we expect c% and ?'o to tend to zero in the limit W--* oo. 

With e o = 7 o = 0 ,  from (3.5) and (3.9), the matrix A(c%, 7o, x) is block 
cyclic and thus diagonalized by the transformation 

where 

V_II A(0, 0, x)[OV OM=] (3.11) 

I 1 e_2~ik~p/M2] (3.12) V=L~2 J k ~ , p = O ,  1,...,M 2 l 

The resulting determinant is simply evaluated to show that for large W 
and M2, 

log I-I [ 1 - h + ( ( ~ , ( ~ 2 ,  x , p ) h - ( - ~ , ~ 2 ,  x , p ) ] d x  (3.13) 
p = O  

where 

h• p)= Y~ 
1 2 = 0  

M 2 --  1 

g(~bl, 02, X, 12, O)e +2~u2p/M2 (3.14) 

To evaluate the summations (3.14), we first apply the conjugate 
modulus transformations (3.2), 

01(z; e ~i~) = - i ( - i ' c )  -1/2 e iz2/~Ol(z/z ; e ~i/~) (3.15a) 

and 
t . t . 01(0, e -'~) = (l/e) 3/2 0,(0, e ~/~) (3.15b) 

together with the formula 

02(z; q) = ql/4eizO4(z + 7z/2 + ~ / 2 ;  q) (3.16) 

to rewrite g, as defined by (3.6), as 

g(~bl, ~b2, x, 12, 0) 

2 2 0I(0, e ,~a~/w) 
~ l / 2  l e _ rCal ~bl/a2 + r~a2q)2/a 1 

M2 0'1(0; e -~a~/a:) 

x e'~"~Ol/w + ~i(12+O2)/a421Ol(rc02 + rcialO1/a2; e -  7zal/a2)t 

04(z' - ~c( ; q') 
X 

04(TzCff ; q'  ) 01(z'  ; q') 
(3.17) 
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where 

z: = 7E rcia 1 
MT~ (12 + 0 2 ) - ~ -  :1 

(3.18) 
~' = x -  ial /W, q' = e ,al/w 

The term involving the modulus in (3.17) is a factor in both h+ and 
h_.  We can remove the modulus if we replace the term by its complex 
conjugate in h . Use of (2.43), together with the interrelationship 

01(Z ; e ~ri~) = --iql/4eizO4(z + rcv/2 ; e =i~) (3.19) 

then shows that, to leading order in M2, 

h +(~bl, 02, x, p)  ~ ~1/2H(01 , 02, x, p /M2)  (3.20a) 

h_ (~bl, q~2, x, p ) ~  -{1/2/~(~b I , (b 2, x, p /M2)  (3.20b) 

where 

,,=ex, i ,C 
01(TC(X - -  ~ 2 )  -~ gial(y 42 ~1 )/a2 ; exp( - rcaJa:)) 

x (3.21) 
01(rex + trial y/a2; exp( - gal/a2) ) 

and we recall that al := L/M1 and a2 := W/M2.  
Hence, after substituting (3.20) in (3.13) and observing that the resulting 

expression is a Riemann approximation to a definite integral, we see that 
the bulk pressure PB is given by 

t i p s =  1 f f  f s  X, y ) l Z ] d x d y  
ala2 

(3.22) 

In the special case 01 = 02 = 1/2 this formula is equivalent to that given by 
Gaudin [ref. 11, Eq. (53); see also ref. 16]. 

A P P E N D I X  

A1. Proof  of  T h e o r e m  2.1 

First we note that the lhs of (2.20) is antisymmetric in each of the xk 
and in each of the Yk- The rhs also has this property, since interchanging, 
say, x t with x r is equivalent to interchanging two rows of the determinant, 
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which changes the sign. Interchanging xk with Yk for each k = 1 ..... N on the 
lhs is equivalent to replacing e by - e  and multiplying by (--1) N. This 
property clearly holds true on the rhs. It thus suffices to prove that both 
sides of the equation are the same function of xl and a. 

To do this, we will use Liouville's theorem. Since 

O~(z+re ;q )=  -O~(z ;q ) ,  0 4 ( z + r e ; q ) = O 4 ( z ; q  ) (AI.1) 

under the translation x~ ~-~ x~ + z~ both the lhs and rhs are unchanged apart 
from a factor of - 1  on both sides. Next consider the periodicity of both 
sides under the mapping x~ ~-+ xl + rtz, where q = e ~i~ and Im(z) > 0. Since 

01(x + rez; q) = - q - l e  2ixOl(x; q) 
(Al.2) 

04(x + rez; q) = - q - ~ e  2ixO4(x ; q) 

both the lhs and rhs remain unchanged, apart from a factor of e 2i~ on both 
sides, under this translation. 

Finally, consider the ratio rhs/lhs. From the above results, this is a 
doubly periodic function of x I with periods 7z and ~r. Furthermore, since 
the rhs vanishes at the zeros of the lhs (which are all simple), we have that 
rhs/lhs is a doubly periodic entire function of xl and thus, by Liouville's 
theorem, equal to a function g(c~) independent of x~ (and thus Xz ..... XN 
and the Yk). 

To see that g(~) = 1, consider the limit yj  --+ x s for each j = 1,..., N. In 
the determinant the diagonal term dominates, so that the rhs behaves as 

U 1 
04(e; q) [ I  (A1.3) 

j= 1 01(xs - YJ; q) 

Inspection of the lhs shows this to be the leading-order term, so g (~)=  1, 
as claimed. The identity (2.20) is thus proved. 

A2. Proof  of  Theorem 2.2 

We seek the Fourier decomposition of the function 

f ( z ) =  0 4 ( z - r e ~ ; q )  q = e  # > 0  (A2.1) 
0 1 ( z -  i#; q) '  

in the limit #--+0 +. The function is antiperiodic (antiperiod re) and 
continuous for all real z, so therefore has the Fourier decomposition 

f ( z )  = -  am(e, #, q)e ~2~+ ~ (A2.2) 
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where 

Consider 

�9 f~/2 04(z_rcc~;q) e (2m+l)i~dz 
a~(c~, I ~, q) = ~-~/2 01(z-- il~; q) 

(A2.3) 

where 

q(2Mn+2s+l)e(2Mn+s+l)it_2rffc ~ 2#e2Mmz 

g( s )  -~- t --  q(ZMn+2s+ l ) e - - 2 r ~ i ~  2,u (A2.11 ) 
n =  --~3 

[ 04(z-zcc~;q) e-(2m+l)iZdz (A2.4) 
I : =  Jc 01(z-it~; q) 

where C is the rectangle with vertices at ~z/2, -re/2, r~/2 + ~z, - re /2  + ~ 
traversed anticlockwise. By the properties (A1.2) and the formula 

e (2m+l)~i~ q--(2m+l) (A2.5) 

parametrization of the paths parallel to the real axis gives 

I= am(C~,/~; q)(1 - q(-2m + X)e2~i~ + 2, ) (A2.6) 

(Note: The contribution to I from the two sides parallel to the imaginary 
axis cancel by the periodicity of the integrand.) 

On the other hand, the contour C encloses a single simple pole at 
z = i#, so the residue theorem gives 

I= 2rci 04(02 -- ~0~; q) e(2m + 1)~ (A2.7) 
0'1(0; q) 

Equating (A2.6) and (A2.7) thus gives the value of am(#, ~; q). Substituting 
this value in (A2.2) gives 

04(ift-rcc~;q) ~ q(2m+l)e(2m+l)# 2r~&-2#e(2m+t)iz 
f(z)  = --2i 0](0; q) . . . .  1 - q(2m+ 1) e z~g~- z~ (A2.8) 

If we write 

m = M n + s ,  O<~s<<.M-1, n = 0 ,  +1 .... (A2.9) 

and replace the sum over m by a sum over n and s, then (A2.8) becomes 

04 ( i ]1 -  7ZC(; q) ~_~1 
f ( z ) = - - 2 i  ~ , ,~-~-  L g(s) e(2~+~)i~ (A2.10) 

at ; q )  , = o  
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C o m p a r i s o n  of (A2.11) with the s u m over  m in (A2.8) shows tha t  the 
s u m m a n d s  are of the same  func t i ona l  form. Hence  g(s) can  be s u m m e d  as 

1 . "s M+ 1) 0'1(0; qM) e-iMz 
g ( s ) = ~  te~t 0 4 ( i # M _ [ T z o ; + ~ ( l _ M ) + T z z ( M _ l ) / 2 _ T z z s ] ; q M )  

04(Mz -- [-7c0~ d- #(1 - -  M )  + ~ z ( M -  1)/2 - rczs]; qM) 
x 01(Mz - i #M;  qM) (A2.12) 

S u b s t i t u t i n g  (A2.12) in  (A2.10) a n d  t ak ing  the l imit  p ~ 0  + gives the 

r equ i red  result .  | 
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