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Exact Results for the Two-Dimensional,
Two-Component Plasma at I'=2 in Doubly
Periodic Boundary Conditions
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The two-dimensional, two-component plasma is considered in doubly periodic
boundary conditions with the positive and negative charges confined to separate
interlacing rectangular lattices. It is shown that at the special coupling I"'=2, on
a lattice of 2M x 2M, sites, the grand partition function can be written as a
double integral over a product of determinants of dimension 2M, x2M,. On
the basis of a conjecture regarding the zero distribution of the grand partition
function, the large-M, behavior of the determinant is given and the pressure
evaluated exactly.
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1. INTRODUCTION

The two-component, two-dimensional (log-potential) Coulomb gas is a
model system in many physical theories. The system first became prominent
in the work of Kosterlitz and Thouless on topological phase transitions
in two dimensions (ref. 1; see also the recent reviews in refs. 2 and 3). As
well as the discovery of further topological phase transitions (roughening
transition, floating phases, etc.; see, e.g., ref. 4), the Coulomb gas has since
been used as the basis for renormalization group theories of two-dimensional
phase transitions.”’

The two-dimensional Coulomb gas in a continuous domain is a two-
parameter system: the dimensionless coupling constant

I:i=q%kyT (1.1)
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where g is the magnitude of the charges, and the dimensionless density tp,
which is the ratio of the interparticle spacing 1/p to the “hard-core”
diameter of the particles 7. The hard-core or similar regularization of
the logarithmic potential is necessary to stop the collapse of positive and
negative charge pairs at low temperature.

An alternative to imposing a “hard-core” about each of the charges is
to divide the domain into a grid of two sublattices, and allow each species
to occupy sites on one or the other of the sublattices. On physical grounds
it is expected that the lattice and continuum models will have the same
properties in the low-density limit.

One such shared property should be the leading-order singular behavior
of the Mayer expansion for I'>4 (the conductor phase) obtained by
Zittartz® in the continuum for { -0 as

(e, 1/(2d-TI)¢Z*

{22d=Nog ¢, 1/2d—T)eZ™ (1.2)

TﬂPsingN C(F) {

where { denotes the fugacity, the dimension is d= 2, and ¢(I") is independent
of {. In the context of the Yang-Lee characterization of a phase transition,”
the behavior (1.2) implies that in the conductor phase the zeros of the
grand partition function must pinch the real axis in the complex fugacity
plane at {=0. On the other hand, for I'>4 the Mayer expansion is
convergent,® so the neighborhood of { =0 must be zero-free.

A recent study® of an analogous two-component, log-potential
Coulomb gas on a one-dimensional lattice has shown similar features of the
complex zeros to those expected on the two-dimensional lattice. On the
one-dimensional lattice, it has been conjectured'® that all the zeros of the
grand partition function lie on the negative real axis in the complex scaled
fugacity (£) plane for I < 2 and on the unit circle for I"> 2. These properties
are conjectured to hold true in the finite system, and further, for /"< 2, the
zero closest to the origin (&, say) is expected® to have the expansion

al) , al) }

+ (1.3)

{
51=—W|:ao(r)+ VAR
where M is the order of the grand partition function polynomial and the
dimension is d=1. From (1.3) the behavior (1.2) with d=1 is deduced.

Observing the similarities of the behavior (1.2) for d=1 and 2, the
question of the behavior of the grand partition function zeros when d=2
immediately arises. This problem is clearly more complex than that in one
dimension, as an expansion of the form (1.3) would depend on the precise
shape of the finite system in addition to the number of lattice sites. The
most obvious starting point toward answering this question is the numerical
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cvaluation of the grand partition function polynomials for small lattice
sizes. Experience of our previous study® shows that the largest lattice
which can be thus treated will have approximately 16 sites. Due to this
small size and the anticipated strong shape dependence, it is desirable to
have some larger size data available at a particular coupling so as to aid
the interpretation of the data in general.

With this aim in mind, in this paper we will make an analytic study
of the grand partition function polynomial at the coupling I"=2 in doubly
periodic boundary conditions. It will be shown that on a 2M, x 2M, lattice
the grand partition function can be written as a double integral over a
product of determinants of dimension 2M,x2M,. It is not possible
explicitly to evaluate the determinant, but the numerical task of calculating
the zeros from this expression now depends only polynomially on M, in
cost. A numerical study of this formula and the general I' cases will be
undertaken in a subsequent paper.

A spinoff from this calculation is a rederivation of the exact expression
for the pressure, in the thermodynamic limit, obtained by Gaudin."'* Like
Gaudin’s calculation, our derivation relies on a conjecture so is not
rigorous. The conjecture is closely related to the expected behavior of the
density of zeros of the grand partition function and thus our main theme.

2. EXACT EVALUATION OF THE GRAND PARTITION
FUNCTION AT I'=2

2.1. The Potential in Periodic Boundary Conditions

The solution of the two-dimensional Poisson equation

V24(x, y)= ~2m 6(x) 8(») 21

subject to the periodicity condition

¢(x+ L, y)=¢(x, y + W)=4(x, y) (22)

is required.
Formally, this can be achieved by writing

$(x, y)= i

oC
Z am, ; e2m‘(mx/L +ny/W) (23 )

and

0 ) 1 @ ]
5(.7() — Z e27umx/L’ — W z eany/W (24)

SI
3
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Substituting (2.3) and (2.4) in (2.1), differentiating under the summation
signs, and equating like coefficients of the basis function

eZni(mx/L +ny/W)
gives

1 1
G =2 LW (mILY + (n]W)?

(2.5)

The coefficient of the constant term [{m, n)= (0, 0)] in the Fourier expan-
sion thus diverges. Omitting this term (a step which is often justified by
charge neutrality!?) gives

e2ni(mx/L + ny/W)

1 oC o0
#(x, y)= 2nLWm=Z_OO n;_w (/LY 1 (n/ W)
(m,n)#(0,0)

(2.6)

The summation (2.6) is conditionally convergent and the value is
sought such that the Poisson equation (2.1) is satisfied. Glasser’® has
summed (2.6) as

P(x, y)=ny*/LW —log|0,(n(x + iy)/L, e "™"*)| + constants  (2.7)

where

0i(z;9)= —i Z (_l)nq(n+1/2)2621(n+1/'2)z (2.8)

n= —oC

A well-known theorem of complex analysis says that the real part of an
analytic function is harmonic. Now log 8,(z; ¢) is analytic in z for 6, #0
and its real part is log|0,(z; ¢)|. Hence the term my?/LW in (2.7) should be
omitted for (2.1) to be satisfied. However, the right-hand side of (2.7)
without this term is periodic in x, but not in y. The solution satisfying (2.1)
obtained from (2.6) is thus discontinuous in the y direction.

The constant term in the potential is chosen so that as L, W — o0,

#(x, y)~ —5log(x*+ y?) (2.9)
Since for small |z,

01(z; q)~261(0; q) (2.10)
then the required potential which satisfies (2.1) and (2.9} is

_ LO,(n(x +iy)/L;e”""")
¢(X, y) - 1Og 7[9,1(0, e—rzW/L)

(2.11)
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Further discussion regarding the solution of (2.1) in doubly periodic
boundary conditions can be found in ref. 12.

2.2. Definition of the Model

Consider a rectangle of side lengths L and W. Let the rectangle be
divided into a grid of M, x M, sites, with lattice points at the coordinates
(m L/My, n, W/M,), n;=1,2,., M, (p=1,2). Introduce a second inter-
lacing lattice with coordinates ((n, —¢,)L/M,, (n,—¢,)W/M,} and
denote these lattices %, and %, respectively (see Fig. 1). Allow N
(<M, M,) positive charges to occupy %, and N negative charges of the
same magnitude to occupy %.

Two particles, one of charge e at x = (x, y} and the other of charge ¢’
at x’ = (x', ¥') interact via the potential

Vix,x')=ee'd(x—x', y—y') (2.12)

where ¢ is given by (2.11). Denote the coordinates of the kth positive
charge by (m,L/M,, n, W/M,) and the coordinates of the kth negative
charge by ((m,— ¢ L/M,, (n,— ¢,) W/M,), where 1 <m,, m, <M, and
1 < nyg, n, < M,. Further denote

x=nm /M, +niWn, /LM, (2.13a)
and
Yi=n(me— @)/ M, +miW(n; — ¢,)/LM, (2.13b)
+ + +
0] 0 0]
+ + +
a, 0 O 0
+ + +
¢2azI 0 0] O
éa,
 Sp—
a,

Fig. 1. Geometry of the two interlacing rectangular lattices where «, =I/M, and
a, = W/M,. The plus signs form %, while the circles form .%.
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With the notation (2.13), the Boltzmann factor W, for N particles of
charge ¢ and N particles of charge —gq is

Wnr=(1701(0; @)/LDN [F(X 5oy Xp3 Yoo YT (2.14)
where
ITici<ian0i(xe—x;59)0,(yi— ;5 9)
F(X ey X5 Vi =T SLTEE z ! (2.15
t W Vi I) fv=1ﬂf=191(xj—yk;Q) )
and
g=e "V (2.16)

The partition function Z,, and the grand partition function =, are
given by

Zyr= Z z War (2-17)
xe{r} ye{s}
and
MM
= Z NZwr {2.18)
N=0

respectively, where { denotes the fugacity and the sum in (2.17) is over the
set of combinations of the set of complex numbers 7, , and s;, taken N at
a time, where

rox =M, +niWk/LM, (2.19a)

and
S ="1(j— )/ M, +miW(k — ¢,)/LM, (2.19b)

with 1 <j< M, and 1 <k < M,.

2.3. Boltzmann Factor as a Determinant

The exact solution at I'=2 relies on the following determinant
identity, which can be found in ref. 14, Eq. (43), p. 33.

Theorem 2.1. With the notation (2.15),

N
0, ( Y (=) —a; q) F(X{ s X5 Vi V)
=1

04(x,— ye—2; q)
=0,(x; det[ i ] 2.20
e q) 94(0‘§Q)91(xj—yk§€’) Jok =1 N ( )
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where 6,(z; q) is given by (2.8) and

fi(z;9)= Y gqre™™ (2.21)

1= —CO

Proof. (See Appendix A).
Corollary 2.1. We have
F(xlr": XN Vs yN)

1
=] Odtma ) detLf =y 0L pmrwde (222)

-----

where

_ B,z—mu; q)
)= s ) 0,(z; q)

(2.23)

Proof. Simply replace « by =«, integrate both sides with respect to «,
and note that F is independent of «, while

1
j 04z — mt; q) do = 1 (2.24)
4]

for any z.

Remark. The determinant identity (2.22), which generalizes the
Cauchy double alternant formula, has an analogue (Theorem 4.1 of ref. 15)
which generalizes the van der Monde determinant formula.

2.4. Grand Partition Function as a Determinant

Using the key identity (2.22) and the expression for the Boltzmann
factor (2.14), we have

W= (03(0: YLV [ (73 ) et x,— v, )] d

1
x [ 0u(myi ) detLf (%= 5 )] (2.25)

where Z denotes the complex conjugate of z. Next replace the last matrix
in (2.25) by its transpose, note from (2.23) that

f(_zv ’J)): ——f(Z, *’V) (226)
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and use the periodicity in y to conclude that

al

}0 Oa(my; q) det[ f(x,— yr, )1 dy
— (=) jol B4(ny; ) det[£(5,— Sar 7)] dy (2.27)

The resulting product of determinants can be written as a block determinant,
which gives

Wy = (n81(0, g)/L)*"

bt . . ON f(xj~y 30()
on L O,4(moe; ) 04(my; q) det [f(}'ij—fk,“/) ONk }dos dy

(2.28)

where O, denotes the zero matrix of order N.

If the identity (2.28) is substituted in the expression for the grand
partition function (2.17) and (2.18), following Gaudin,""’ we observe that
the resulting expression is an expansion in minors of a 2M M, x2M; M,
matrix. We have

1 a1
Sy [ ] Outmri q) 0u(mr: q) det(an,ue, + (RLIBH(0, @)/LIK) d dy - (2.29)

where the matrix K is given by

K:[ Ossy01, f(?’z,,fz—szl',;z'a 05)] (2.30)
f(é_'ll,lz‘fll',lzf,y) Ortyan

1,, denotes the M x M identity matrix and r,, and s,, are given by (2.19).
The integers [;, !/, I,, /5 lie in the ranges

1<l <M, and 1<b,l<M, (2.31)

2.5. Partial Diagonalization of a Block Matrix

Consider the elements of the upper right-hand block of (2.30). From
(2.19) the quantity r, 5, — s, 4 depends only on the differences /, — /] and
[,—1,, so that we can write

NALT AR T a) = Cgf)l/;,zzf/é(“) (2.32)
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Further, from (2.23) and the periodicity property {(Ai.1) of the theta
functions given in the Appendix, we have

C(B)ll 12(“) = _Cg‘?[)] i, 12(05) (2.33)

Similarly, the entries in the lower left-hand block are also dependent on
differences, so we can write

FGp =Ty v) = C;f]—ll’,12~lz’(y) (2.34)

These entries have the same “anticyclic” property as those of the upper
right-hand block (2.33).

Due to the anticyclic property in the label /, it follows that the
transformation

v OMIMZ} K [ v OM‘MZ} (235)
OM1M2 U“I OM1M2 U .
where
U= [W o — 2l ks + 1/2)/M1 5[2,11(2] (2.36)

(the symbol 6,, denotes the Kronecker delta and 0<k,<M,—1)
diagonalizes the block matrix K. Since this transformation can be applied
to the matrix in (2.29) without changing the value of the determinant, we
see from (2.29) and (2.35) that

1 1
z = jo L 0,(ns q) 04(y; @) det(Loyy, op, + A) dt dy (2.37)

where

e [ O 11,11, 6k1,k{S1(c(z?k2kz'(a)j| (2.38)
Ok, /qSEcll)k; k3 () O, '

and

M —1

Si’f,)kz_ké(ﬁ) (m 107(0; @)I/L) Z cglpl)c2 kz e2"i1‘(k1+1/2)/M1 (2.39)

Rearrangement of the rows and columns in the matrix sum 1,,, ., + 4
shows that the determinant factorizes to give

Mip—1

1 a1
5=] jo Ou(no; ) Oulny; q) 1] detAk,)dudy — (240)

k1 =0
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where
OMz S/(c?,)kzkz/(a)]
Sie— k() O,

is a 2M,x2M, block matrix. It therefore remains to evaluate the
summations (2.39).

Alky) = 12M2+[ (2.41)

2.6. Fourier Decomposition of a Theta Function Ratio
and a Related Summation

To evaluate (2.39), we first write
f4(z — s g)
0,(z;9)

so that the Fourier components when z=nk/M, O<k< M1, are
displayed.

(2.42)

Theorem 2.2. We have
0,z—mna;q)  O4(na;9) 01(0; ¢")

0,(z;q)  0,(Mz;q™)0,(0;9)

0,(Mz — na — nt(M/2 — s — 1/2); ¢™)
Ou(no + nt(M)2—5—1/2); ¢™)

— Miz

M—1
% Z e(25+1)zz
s=0

(2.43)
where

g=e"" (2.44)

Proof. See Appendix A2.

In (2.43) choose
i niw
z=— (i +¢)+—F—(L+¢), Ly=ky,—k

M, M,L (2.45)

g=e ™I t=iW/L, M=M,

and substitute the resulting expression in the definitions (2.32) and (2.23)
of ¢{%),. Then the only term dependent on /; is the complex exponential
exp[2ni(s+ 1/2)1,/M,] [s is the summation variable in (2.43)]. Therefore
the summation over /; in (2.40) is simply
M;—1
Y R M M6, (2.46)

=0
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and thus

Mot 2mily (k; + 1/2)
I, P T
01(0: ¢*") exp{2mi(M,/2 — ki — Y2)[4o/M, + W1y + ¢/ LM, ]}
01(0; q) 0,(n, + niWM (I, + ¢2)/LM,); ™)
| Oa(ndy+ TiWM (I + o) LM, — ot + ne(M /2 — Ky — 1/2); ¢")
Ou(ma—me(M/2— k= 1/2); ¢*")

:Ml

:=f(¢1,¢2,f‘iMl£, m) (247)

1

Similar use of (2.43) shows that

M —1

Y oll) errhta T i2M — f(— g G (ki + 1/2)/M;, —1,,7) (248)
=0

where [ is defined in (2.47).

2.7. The Scaled Fugacity

So that the particle-hole symmetry of the lattice gas is most clearly
displayed, it is necessary to scale the fugacity { so that the coefficient of
{2MiM2 is unity. This can be achieved by calculating the energy of the
configuration in which all lattice sites are filled and scaling by the
corresponding Boltzmann factor.

For a potential periodic in both directions the energy when all sites
are filled is the same at each site. From Section 2.1 we know that the
potential

$(x, y)=ny*/LW —log|6,(n(x + iy)/L; e ™""")] (2.49)

is periodic in both x and y. After introducing the notation

Mi—1 M;—1

Ple ™= 11 11 0u=(/M,+il,r/M,);e™ ™) (2.50)

=0 5h=0
(I1,5) # (0,0)

and
Mi—1 M;—1

01, prse ™) = n n O (nl(li+ ¢ )M, +i(ly + ¢2)r/M,];e7™)

h=0 IhL=0

(2.51)
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we can write the energy E)(p) at a site in row p (p=0, 1,.., M,—1) of
sublattice %, with this potential when all lattice sites are filled as

EM(p)=E{"(p)+ E{"(p) (2.52)
where
—g*n WM, Mt
EW(p)=—F"~r— ) (L +¢,—p)?] 2.53
i (p L(M2 izzo Lh—=p) =L+ d2—p) ( )
and

ES(p)= —q* log|P(e™™"™")/Q($,, §y; e ™HH)] (2.54)
Since E)(p) is independent of p, we have
ED(p)=EM(0)+ ESV(0) {2.55)

and thus
EN(p)=E{"(0)+ E{V(0) — E{"(p) (2.56)

The quantity E{(p) is the energy at a site in row p of the sublattice %,
with all sites filled and the potential (2.49) without the term 7y*/LW, which
is the Coulomb potential of Section 2.1. Since this potential is not periodic
in the y direction, E{"(p) will depend on p.

To calculate E{V(p), it follows from the product expansion of 6.

P(q) — iMz—lMlq—M1M2/4+M1/2—l/4 ﬁ (1 __anMl/Mz)Z(l __an)MlefS

n=1
(2.57)
and
Q(¢17 ¢2,q)= __l'Mz+lq—M1M2/4~M1/4M2+M1/2enr¢2M1(1—I/szfnhm(szl)
X 0, (nd, + nirM  §,/M,; g*/™2)
X H (1 — g¥)yMiMaj(| — gnMy/M2) (2.58)
Hence from (2.56), (2.54), and (2.53) we have
M,q b2 M1 — 42 M1(2p + L)/ M e (0 an/Mz)
EW —ag21 2.59
2 )= O G0 ) g+ WM gy LM | )

where
g=e "Wt (2.60)
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A similar calculation shows that the analogous energy E{*(p) on a
site of row p of sublattice % is given by (2.59) with the replacements
¢+ —¢, and @,+— —¢,, so that the combination E{V(p)+ E{¥(p) is
independent of p. The total energy E of the completely filled lattice is
therefore

E=3M,M,(E;"(p)+ E{’(p))

M, 07(0; g™")

=—-M M,q*lo
1420508 19110, q) 04(ngy + miWM o/ LM, g7

(2.61)

If we replace the fugacity { by the scaled fugacity ¢ according to the
formula
&= 02|m01(0; g)/L| e~ MMM (2.62)

with F given by (2.61), the coefficient of the highest power of £ in the grand
partition function (2.18) is unity, as required.

2.8. Final Expression for =,

The formula (2.40), with the scaled fugacity as specified by (2.62) and
{(2.61) and the summation evaluations (2.47) and (2.48) is our final expression
for Z,. Thus we have

1 a1 Mi—1
S=] | g 0umrig) TT detAlky) dedy
k1=0
where 1
O cf(¢l’¢27(k1+1/2)/M1’k2_k,2’fx)
Alk) =1 +[ Mo , 2.63)
D=l g o b+ 12UM Ko =Ky y) O] |
and
0,(nd, + iWM,¢,/LM,; g*'*2) 8,(0; q)
_ 172 1 1 1¥2 1
=< M, 67(0; g™y (2.64)

The function f is specified by (2.47), and the rows of the upper right-hand
and lower left-hand blocks in (2.63) are labeled by k, (0<k, < M,—1),
while the columns are labeled by k5 (0<k, <M, —1).

3. THE THERMODYNAMIC LIMIT

3.1. The Infinite-Strip Limit
Two different limits give an infinite strip of lattice points,

M, L— w0, L/IM,—>a, (3.1a)

822/61/5-6-13
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and

My, W— w0, WiM, - a, (3.1b)

From Section 2.1 we know that the potential is periodic in the direction of
the strip for (3.1a), but not for (3.1b). In the latter case the potential ¢(y)
in the direction of the strip is equal to the periodic function of case (3.1a)
plus the quadratic #y*/LW. It is therefore to be expected that the free
energy in each case will be different.

We will first consider the limit (3.1a). The product in (2.40) is then
essentially a Riemann sum approximation to an integral. Also, from the
conjugate modulus transformation

04(z; ™) = (—it) V2 e~ /™0, (z/z; ™) (3.2)

it follows that for L — oo,

L\ 12 ,
94(“.“; e—ﬂ:W/L)~<n_I/V> efnL(a~l/2)/W (33)
Hence
LN\ ot nL 1\2 12
() o o {5 (+=3) +(3) |
1
+M, JO log[det A(2, 7, x)] dx} (3.4)
where
OMz g(¢1’ ¢27 X, kZ_kaiu)}
Al x)‘12“2+[g<—¢1,¢2,x, Ky~ ks ) 0.,
(3.5)

and

g(¢1’ ¢2’ X5 129 (X)

— 51/2821”‘(1/2—):)[(#1 +iaz(la + ¢2)/a1]
01(0; qu) |0,(nd, +niWM, ¢,/LM,; qu/MZ)I
01(0; qu/Mz) 0,(ng, +miWM (I, + ¢,)/LM,; qu)

94(TC¢1 + niaz(lz + ¢2)/a1 — 7o + TCZW(1/2 _X)/al ; e—nW/al)
94(noc—7tiW(1/2—x)/a1; g*nW/al)

(3.6)
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The pressure P, in an infinite strip of width W at I'=2, defined as

1
pPy= lim =logZk, (3.7)
M, L - L
L/M;— a

is therefore given by the formula

8P, —Re {le [(ao - %) + (yo —%) } - ai jol log[det A2, 70, X)] dx}
(3.8)

where o, and y, maximize the integral (3.4).

To obtain the strip free energy in the limit (3.16), it would be
necessary to provide the large-M, behavior of the 2M, x 2M, matrix A(k,)
as given by (2.63). It follows from the periodicity property (Al.2) of the
theta functions that the elements f as given by (2.47) of the block matrix
in (2.63) have the periodicity property

f(By, bas b+ My, ) =7 f(dy, ¢, 5, ) (3.9)

Since in general o s 9, the matrix A(k,) has no simple cyclic structure. We
have been unable to obtain the asymptotic behavior of this matrix.

3.2. The Bulk Pressure

To obtain the bulk pressure from the strip pressure (3.8), the values of
g and y, for large strip width W are required. To deduce this behavior, we
use the physical argument that the strip system, having an effective
one-dimensional Coulomb potential, should be in a dipole phase. As such,
Py (&), in the complex ¢ plane, must be free of singularities in a
neighborhood of ¢ = 0. However, as the strip width is increased, the effective
one-dimensional potential gives way to the two-dimensional logarithmic
Coulomb potential. At I"=2, in the bulk, the system is a conductor and the
singular behavior (1.2) implies that the singularities pinch the point & =0,

From (3.8) the singularities of f3 (&) occur at the zeros of A(ay, 74, X).
From (3.5) and (3.6), for A(wg, yo, x) to approach zero as |£| —0, the
matrix elements as defined by (3.6) must tend to infinity. This occurs when
the denominators

B5(nag— miW(1/2 — x); e =7, 04(myo— miW(1/2 — x); e ™H/%)
(3.10)
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approach zero. The function 6,(nz; e™) vanishes at z = (n1/2) mod =, n,
and thus (3.10) can only vanish if «,, 7o=0 or 1 [the points 0 and 1 are
equivalent, since the integrand in (3.4) has period 1 in both « and y]. Thus,
we expect o, and 7y, to tend to zero in the limit W — co.

With o, =7,=0, from (3.5} and (3.9), the matrix A(a,, 7,4, x) is block
cyclic and thus diagonalized by the transformation

‘771 01‘42 v OM
A(0, 0, 2 3.11
[om V”] ( X)[OMZ V] G
where
V=|: ! e~2m'kép/M2] (3.12)
M, Ky, p=0,1,.., M2 — 1

The resulting determinant is simply evaluated to show that for large W
and M,,

My~

1 1
ﬂPw~a—lj log T1 [1=h. (b oo p)ho(= 1o b x. )] (313)
where

hi(¢1’ ¢27 X5 P) - Z g(¢1> ¢25 X, 127 O)eiznlllp/Mz (314)

h=0

To evaluate the summations (3.14), we first apply the conjugate
modulus transformations (3.2),

0,(z; ™) = —i(—it)~ Ve IO, (z/r; € ) (3.15a)
and
01(0; e7™) = (1/2)** 01(0; ¢ ™) (3.15b)
together with the formula
0,(z; q)=q"*e“6,(z + /2 +n1/2; ¢) (3.16)
to rewrite g, as defined by (3.6), as
8(¢1, ¢2, %, 15, 0)

; 7 . ,—rayyw
— 61/2 ¢ e—na1¢f/a2+naz¢§/a1 91(09 € )

M, 0,05 e 77
X T #1/ W+ nih + ¢2)/ M2 |91(713¢2 + nial ¢1/a2; e ”ﬂl/ﬁZ”
8ulz' — o3 q')
O4(ma’s q') 0,(2"; q')

(3.17)
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where

i,

- _ 4,
S = ) =T b

(3.18)
o' =x—ia, /W, g =e ™Y

The term involving the modulus in (3.17) is a factor in both 4, and
h_. We can remove the modulus if we replace the term by its complex
conjugate in ~_ . Use of (2.43), together with the interrelationship

0,(z; e™ )= —ig*e™,(z + nt/2; ™) (3.19)

then shows that, to leading order in M,,

by (b1, ¢2, %, p)~EPH(Py, §5, X, p/M) (3.20a)
h—(¢ls ¢27X’ p)N _61/21_{(¢1’ ¢2,X, P/Mz) (320b)
where
Hgr b ) =orp | T T8y (61 )|

9 0(n(x —¢,) + mia,(y + ¢1)/a,; exp(—mna,/a,))

3.21
. (nx + nia, yjay; oxpl —rnarfay)) D)

and we recall that a, .= L/M, and a, := W/M,.

Hence, after substituting (3.20) in (3.13) and observing that the resulting
expression is a Riemann approximation to a definite integral, we see that
the bulk pressure Py is given by

ﬂPB: 4[1 Jdlog[l—i—élH((bl’(ést’ y)|2] dXdy (322)
0 Y0

a,a,

In the special case 6, =8, =1/2 this formula is equivalent to that given by
Gaudin [ref. 11, Eq. (53); see also ref. 16].

APPENDIX

A1. Proof of Theorem 2.1

First we note that the lhs of (2.20) is antisymmetric in each of the x,
and in each of the y,. The rhs also has this property, since interchanging,
say, x; with x, is equivalent to interchanging two rows of the determinant,
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which changes the sign. Interchanging x, with y, for each k= 1,..., N on the
lhs is equivalent to replacing o by —a and multiplying by (—1)". This
property clearly holds true on the rhs. It thus suffices to prove that both
sides of the equation are the same function of x; and «.

To do this, we will use Liouville’s theorem. Since

Oiz+m;q9)= —0:(z;q), Oiz+m;q)=04z;9q) (AL1)

under the translation x, + x; + 7 both the lhs and rhs are unchanged apart
from a factor of —1 on both sides. Next consider the periodicity of both
sides under the mapping x, — x,; + nt, where g =™ and Im(7)> 0. Since

Bx+nt;q)= —q e *0,(x;
1 q9)=—q | (x5 9) (AL2)
Oulx+7nt;q)= —q e ¥ 04(x; q)

both the lhs and rhs remain unchanged, apart from a factor of ¢** on both
sides, under this translation.

Finally, consider the ratio rhs/lhs. From the above results, this is a
doubly periodic function of x; with periods = and =t. Furthermore, since
the rhs vanishes at the zeros of the lhs (which are all simple), we have that
rhs/lhs is a doubly periodic entire function of x, and thus, by Liouville’s
theorem, equal to a function g(«) independent of x, (and thus x,,.., xy
and the y,).

To see that g(a) =1, consider the limit y; — x, for each j=1,., N. In
the determinant the diagonal term dominates, so that the rhs behaves as

04005 9) 1 :

_ Al.3)
j:lgl(x/_yj;q) (

Inspection of the lhs shows this to be the leading-order term, so g(a)=1,
as claimed. The identity (2.20) is thus proved.

A2. Proof of Theorem 2.2

We seek the Fourier decomposition of the function

_Ou(z—ma; q)
0u(z—ip; q)

f(z) g=e"", u>0 (A2.1)

in the limit 4 —0". The function is antiperiodic (antiperiod =7} and
continuous for all real z, so therefore has the Fourier decomposition
1 2 _
f2)== 3 (o pq)e®+DE (A2.2)

= —o0
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where
/2 9 _ . )
anlo s gy= | SETTHA g (A23)
—np 0(z—iu; q)
Consider
O,z—mo;q) _ )
I:= A T AL - Cma i gy A24
Jc 0,(z—1iu; q) (A24)

where C is the rectangle with vertices at n/2, —=n/2, n/2 + 1, —w/2+nt
traversed anticlockwise. By the properties (A1.2) and the formula

(2m+ ljnit =

e~ g~ GmtY (A2.5)

parametrization of the paths parallel to the real axis gives
I=a,,(0 u3 q)(1 — g2+ DePrix+2x) (A2:6)

(Note: The contribution to I from the two sides parallel to the imaginary
axis cancel by the periodicity of the integrand.)

On the other hand, the contour C encloses a single simple pole at
z =iy, so the residue theorem gives

Oulip =723 9) om -+ 1)
61(0; ¢)

Equating (A2.6) and (A2.7) thus gives the value of a,,(u, «; g). Substituting
this value in (A2.2) gives

[=2ni (A2.7)

o« (2m+1)€(2m+1)p72nia‘2ye(2nz+l)iz

O4(ip—mo; q) q
f(Z): —2i 9’1(0,q) e 1_q(2m+1)672nid—2u

(A2.8)

If we write
m=Mn+s, O<s<M—1, n=90, £1,. {A2.9)

and replace the sum over m by a sum over n and s, then (A2.8) becomes

O4(ip—ma; q) M :
flz)= -2i ——+ g(s)etz e (A2.10)
01(0; q) sgo
where
=] 2Mn+2s+1) ,2Mn +s+ 1)pu—2mic — 2p ,2Mniz
q e e
gls)= Z GMn+25+1) ,—2nia 21 (A2.11)

. l—gq
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Comparison of (A2.11) with the sum over m in (A2.8) shows that the
summands are of the same functional form. Hence g(s) can be summed as

01(0; g*)e ™"
0,(iuM — [ro + u(1 — M) + ne(M — 1)/2 — mzs]; g™)
y 0,(Mz— [mo+ (1 — M) + nt(M — 1)/2 — nzs]; g™)
0,(Mz—iuM; g*)
Substituting (A2.12) in (A2.10) and taking the limit y— 0% gives the
required result. ||

1
= u(s—M+1)
g(s) zle

(A2.12)
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